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Abstract. We study equilibrium properties of random walkers in one-dimensional random
environments of finite lengthL. From an exact expression for the quenched average of the free
energy we derive analytical results for all cumulants and all Rényi entropies of the equilibrium
distribution. In contrast to the finite variance of a typical non-equilibrium distribution in the
unbiased situation, we find that in equilibrium the disorder averaged variance diverges with the
size of the system asL3/2.

1. Introduction

Random walks in random environments (RWRE) are simplified models for the motion
of particles or states in random media. Their relevance for various physical systems is
reviewed, for example, in [1–3]. After initial work by mathematicians [4, 5], especially that
of Sinai [6] and Golosov [7] on the anomalous time dependence of the mean-value and
the mean-square displacement in the unbiased, one-dimensional case, many other relevant
quantities were investigated for this model in the physical literature. Examples are the
mean velocity and the diffusion constant in the presence of a global bias [8], 1/f -noise
in such systems [9], passage time distributions [10] and its multifractal properties [11, 12],
and recently the response to concentration gradients [13, 14]. There is continuing interest
in these systems on the physical side because of questions of self-averaging [15] and aging
[16, 17]. On the mathematical side, the fundamental question of recurrence of such random
walks, even in one dimension, has only been partially solved [18, 19]. For the status in
higher dimensions we refer to the above-mentioned review articles.

We became interested in these systems after realizing that many dissipative chaotic
systems exhibit a dynamical localization phenomenon [20], which should be regarded as a
generalization of the Golosov phenomenon proved in [7] (see also [2]). Subsequently, the
question arose whether such RWREs can also be realized in Hamiltonian systems. This was
answered affirmatively in [21] by constructing inhomogeneous chains of area-preserving
Baker maps showing the same phenomenon. This construction utilizes the equilibrium
distribution for a RWRE of finite length. An important question in this context is whether
the mean-square displacement of a RWRE in equilibrium remains bounded or not if the
system lengthL is increased. The Golosov phenomenon refers to the non-equilibrium
situation where one considers the evolution of a distribution in the infinite system. It has
been shown that for a typical disorder realizationσ 2(t, L = ∞) remains bounded [7], but
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is this true also for the equilibrium valueσ 2(t = ∞, L)? It turns out that there exists little
work on the equilibrium distribution, which in one dimension is simply the Boltzmann–
Gibbs distribution. We are aware only of an investigation by Grassberger and Leuverink
[22] of the Ŕenyi entropies [23] criticizing previous work [24] and a discussion by Parisi
[25] in the context of directed polymers (see also [16]).

2. Model considerations and analytical results

In the discrete formulation a RWRE is governed by the evolution equation

πj (t + 1) =
∑
i

πi(t)pij (2.1)

where πi(t) is the probability to be on sitei at discrete timet and pij are transition
probabilities, which are time-independent random variables. The latter provide the quenched
random environment. In the following we consider only systems with nearest-neighbour
transitionspij = piδj,i+1+(1−pi)δj,i−1, 1< i < L, and with reflecting boundary conditions
at i = 1 andi = L, i.e. p12 = pL,L−1 = 1. The stationary distributionρi is obtained from
detailed balanceρipi = ρi+1(1− pi+1) as

ρi = ρ1

i−1∏
l=1

pl

1− pl+1
(2.2)

whereρ1 is determined by the normalization

(ρ1)
−1 = ZL = 1+

L∑
i=2

i−1∏
l=1

pl

1− pl+1
. (2.3)

The transition probabilitiespl are chosen as independent identically distributed random
variables obeying

ln2(pl/(1− pl))− ln(pl/(1− pl))2 = 2α and ln(pl/(1− pl)) = µα.
The overbar denotes a quenched average, i.e. the average over realizations of the random
environment. Rewriting (2.2) asρi = exp(−βVi)/ZL, one sees thatβVi is essentially
the trace of a discrete random walk with independent increments ln(pl/(1− pl)), which
is characterized by a diffusion constantα and a biasµ. We are mainly interested in the
caseµ = 0, which is usually referred to as the ‘Sinai case’. In our numerical simulations
presented in [26], we calculated quantities like the variance of the equilibrium distribution

K
(2)
L =

∑L
i=1 i

2ρi − (
∑L

i=1 iρi)
2, quenched averagesK(2)

L , or averages of the formlnK(2)
L .

The random variablespl in these simulations were, for simplicity, always drawn from a
binary, unbiased distribution, i.e.pl takes the valuesp and 1− p with equal probability.
Even for this simple, discrete system it seems to be impossible to calculate any of the above
quantities exactly. We, therefore, consider in our analytic treatment the continuum version
of the above model.

In the continuum limit the discrete potentialVi is replaced by a continuous potential
V (x), which varies like a Brownian path, characterized by the same diffusion constant
and bias as the discrete potential. This replacement affects only small scales, where the
discreteness becomes visible. We are, however, interested in large-scale properties, i.e.
properties which become macroscopic in the limitL → ∞. We will thus observe only
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coarse-grained properties where the discreteness is irrelevant. In the continuum limit the
partition functionZL of (2.3) is given by†

ZL =
∫ L

0
dx exp

(
−
√

2α
∫ x

0
ξ(y) dy − µαx

)
(2.4)

whereξ(y) is an uncorrelated, Gaussian random variable with zero mean and unit variance
ξ(y)ξ(y ′) = δ(y − y ′). From expression (2.4) we may obtain the cumulants of the
equilibrium distributionρ(x) = exp[−βV (x)]/ZL from the derivatives with respect to
µ of the cumulant generating function lnZL and accordingly their quenched averages as

K
(m)
L = (−α)−m

∂m

∂µm
lnZL. (2.5)

Thus one has to calculate the quenched average of the free energy of the system of length
L. This is a non-trivial task. We can, however, rely on recent results for the generating
function8L(p) = exp(−pZL) by Monthus and Comtet [14]. They obtained an expression
consisting of several terms

8L(p) = 8(c)
L (p)+

∑
06k6µ/2

8
(k)
L (p) (2.6)

with

8
(c)
L (p) =

1

2π2

∫ ∞
0

ds e−(αL/4)(µ
2+s2)s sinh(πs)

∣∣∣∣0(− µ2 + i
s

2

)∣∣∣∣2(pα
)µ/2

Kis

(
2

√
p

α

)
(2.7)

and

8
(k)
L (p) = e−αLk(µ−k)

2(µ− 2k)

k!0(1+ µ− k)
(
p

α

)µ/2
Kµ−2k

(
2

√
p

α

)
. (2.8)

0(x) andKµ(x) denote the gamma function and modified Bessel functions of orderµ,
respectively [27]. The parts8(k)

L (p) are present only forµ > 0 and stem from the discrete
part of the spectrum of an associated Fokker–Planck operator, while8

(c)
L (p), due to a

continuous branch of the spectrum, is always present [14]. From these expressions for
8L(p) one obtainslnZL by the well known representation

lnZL =
∫ ∞

0
dp

1

p
[e−p −8L(p)]. (2.9)

Let us first calculate this average forµ > 0. According to (2.6) and (2.9) we also have for
lnZL several contributions

lnZL = lnZ(c)L +
∑

06k6µ/2
lnZ(k)L . (2.10)

The first part is simply given by

lnZ(c)L = −
∫ ∞

0
dp

1

p
8
(c)
L (p).

For µ > 0 thep- and thes-integration of (2.7) can be interchanged and one obtains

lnZ(c)L = −2
∫ ∞

0
ds

1

µ2+ s2
e−(αL/4)(µ

2+s2) s sinh(πs)

cosh(πs)− cos(πµ)
. (2.11)

† The parametrization is chosen in accordance with [14].
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The second contribution is the part

lnZ(0)L =
∫ ∞

0
dp

1

p
[e−p −8(0)

L (p)]

which can be rewritten as

lim
x→0

2
∫ ∞
x

dy
1

y

[
exp(−αy2)− 2

0(µ)
yµKµ(2y)

]
.

This integral can be evaluated [28] to yield simply

lnZ(0)L = − lnα −9(µ) (2.12)

where9(µ) = ∂ ln0(µ)/∂µ is the Digamma function. Forµ > 2k, k = 1, 2, . . . , one
obtains additional contributions

lnZ(k)L = −
∫ ∞

0
dp

1

p
8
(k)
L (p)

which evaluate to

lnZ(k)L = −e−αLk(µ−k)
µ− 2k

k(µ− k) . (2.13)

In the following we will show that in the limitµ→ 0 each of the termslnZ(0)L andlnZ(c)L
becomes divergent, but in such a way that in their sum the singularities cancel exactly. This
means that the results (2.10)–(2.13) can be analytically continued fromµ > 0 to µ = 0.
The behaviour forµ negative is obtained by observing that

lnZL(−µ) = lnZL(µ)+ αµL. (2.14)

This relation simply follows by a change of variablesy = L− x in (2.4) and the statistical
symmetry of the stochastic processξ†. Equation (2.14) means thatlnZL(µ) + αµL/2 is
an even function ofµ implying that by (2.5) all odd disorder averaged cumulants of order
m > 3 vanish exactly. With equations (2.10)–(2.14) we have an exact result forlnZL(µ)
for all µ.

We are interested in the asymptotic behaviourL → ∞ of the cumulants
(2.5) for the Sinai caseµ = 0. Thus we needlnZL(µ) for large L and
small µ. Due to the exponential in the integral (2.11) largeL implies that to
leading order inL only the immediate neighbourhood ofs = 0 contributes. A
complication arises because the termT (µ, s) = s sinh(πs)/(cosh(πs)− cos(πµ)) in the
integrand of (2.11) is discontinuous at the point of interest (µ = 0, s = 0), since
limµ→0 lims→0 T (µ, s) = 0 6= lims→0 limµ→0 T (µ, s) = 2/π . Thus a naive saddle-point
approximation would not serve our goal of obtaining the leading behaviour inL of all
coefficients in a smallµ expansion oflnZL(µ). This goal is achieved by the decomposition

T (µ, s) = 2

π

s2

s2+ µ2
+ R(µ, s)

where the first, rational part captures the discontinuous behaviour ofT (µ, s). The remainder
R(µ, s) is analytic inµ ands, i.e. it can be expanded into a two-dimensional Taylor series
around (µ = 0, s = 0)

R(µ, s) =
(
π

6
+ π3

120
µ2+O(µ4)

)
s2−

(
π3

360
+ π5

1512
µ2+O(µ4)

)
s4+ · · · .

† A similar argument given in [29] yields∂ lnZL(µ)/∂L = ZL(−µ)−1 which in connection with our
equation (2.14) leads to the interesting general relation∂ lnZL(µ)/∂L = (ZL(µ))−1 − αµ.
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Keeping only the rational part ofT (µ, s) in (2.11) we can evaluate the corresponding
integral exactly and expand the result into powers ofµ

lnZ(c)L ' −
4

π

∫ ∞
0

ds
s2

(µ2+ s2)2
e−(αL/4)(µ

2+s2) (2.15)

= − 1

µ

[
1− e−(αL/4)µ

2

√
αL

π
µ2+ αL

2
µ2

−
(

1+ αL
2
µ2

)
erf

(√
αL

4
µ2

)]
(2.16)

= − 1

µ
+ 2

√
αL

π
− αL

2
µ+ 1

6
√
π
(αL)3/2µ2

− 2

15
√
π

(
αL

4

)5/2

µ4+O(µ6) (2.17)

where erf(x) = (2/
√
π)
∫ x

0 dt exp(−t2) denotes the error function. The contributions to
the integral (2.11) from the remainderR(µ, s) can also be evaluated exactly. It is easily
checked that from terms∼s2k in R(µ, s) one obtains contributions to the coefficients of
µ2l , which increase at most asLl+1/2−k, k = 1, 2, . . . , while the leading terms as given
in (2.17) increase asLl+1/2 (see also (2.20)). This verifies explicitly that the remainder
R(µ, s) contributes only lower-order corrections to the results (2.15)–(2.17).

The smallµ expansion of the other part oflnZL(µ) given by (2.12) yields

lnZ(0)L =
1

µ
− lnα + γ − π

2

6
µ+O(µ2) (2.18)

where γ = 0.5772. . . is the Euler constant. From (2.17) and (2.18) we can verify the
cancellation of the singular terms 1/µ and we can also inferlnZL(µ = 0) of the Sinai
model which is obtained as

lnZL(µ = 0) = 2

√
αL

π
− lnα + γ +O(L−1/2). (2.19)

The same expression can be obtained directly with the aid of (2.9) and the expression for
8L(p) given by Oshaninet al [13] for µ = 0. It was also found previously in [30]. Let us
note that the terms of orderL−1/2 are the first corrections to the leadingL1/2 behaviour of
theµ0 coefficient in (2.17) due to the remainder termR(µ, s). With R(µ = 0, s) ' 1

6πs
2

one obtains the explicit result− 1
3π

3/2(αL)−1/2 for the correction term, which remarkably
is also in full accordance with a replica calculation without symmetry breaking (see the
appendix). In the following we will use the result (2.19) for the calculation of the Rényi
entropies for this model.

By differentiating (2.17) with respect toµ the low-order cumulants are readily seen to

beK(1)
L = 〈x〉 = L/2, K(2)

L = 〈x2〉 − 〈x〉2 ∼ (1/3√απ)L3/2, etc. The somewhat surprising

increase of the average varianceK(2)
L with increase of the system lengthL is also confirmed

numerically [26] and will be discussed later. The asymptotic largeL behaviour of the

higher-order cumulantsK(m)
L is most easily derived by differentiating (2.15) twice with

respect toL resulting in a Gaussian integral, which can be evaluated and differentiated with
respect toµ to any order. In this way one obtains

K
(m)
L ∼ (−1)(m/2)+1 1

π

0((m− 1)/2)

m+ 1
α(1−m)/2L(1+m)/2 (2.20)
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for m even, andK(m)
L = 0 for oddm > 3 in accordance with the symmetry (2.14). Note

that α has the dimension of an inverse length, so thatK
(m)
L has correctly the dimension

[length]m.
An alternative characterization of the equilibrium distribution is by the Rényi entropies

Hq of order q. In the discrete case they are defined asHq = (1− q)−1 ln
∑L

i=1 ρ
q

i . In

the continuum limit one considers accordinglyHq = (1− q)−1 ln
∫ L

0 dx ρ(x)q , which are
actually relative Ŕenyi entropies [23], which may, in contrast to the discrete case, also take
negative values. The disorder averaged Rényi entropiesHq can be calculated from the
relation

(1− q)Hq = −q lnZL(α,µ)+ lnZL(αq2, µ/q2). (2.21)

For the Sinai caseµ = 0 one obtains with (2.19) the exact result

Hq = 2
ln q

q − 1
+ γ − lnα +O(L−1/2) (2.22)

valid for q > 0. For q = 0, one has the obvious resultH0 = lnL and for q < 0, Hq
diverges asL1/2. The exact result (2.22) confirms theq-dependence obtained in [22] by a
mean-field-like approximation. Although for largeq one might expect differences between
the discrete and continuum model, we find in [26] that the numerical data of [22] are very
well described by our continuum result also with respect to the constant terms. This means
that the conclusion in [22] thatρ(x) is not multifractal becauseHq/ lnL has only trivial
limits for L→∞ is also established here in the continuum limit.

3. Summary and discussion

Random walks in random environments provide simple models for non-equilibrium
processes in disordered environments. The connection with dynamical systems via Markov
partitions [20, 21, 31] also makes them relevant for chaotic diffusion processes in the
presence of quenched disorder.

We presented analytical results for the quenched average of the free energy and derived
quantities such as averaged cumulants of the equilibrium distribution and Rényi entropies.
One surprising result is that the variance of the equilibrium density scales with the length
of the system asL3/2. A simple argument for this behaviour is the following. Typically
on any length scaleL the potentialV (x) ∼ ∫ x

0 ξ(y)dy has one absolute minimum and
the equilibrium distribution is concentrated in the close neighbourhood of that minimum
leading to a variance of order O(1). There is, however, a small probability that the system
has a second relative minimum almost degenerate with the deepest one. Within a distance
of order O(L) this occurs with a probability of order O(L−1/2) since the fluctuations of
V (x) increase with the system length asL1/2. Such rare configurations contribute terms of
the order O(L2) to the variance of the equilibrium distribution. Together with its weight
∼L−1/2 this leads to an averaged variance which scales asL3/2. This means that atypical

configurations dominate the quenched averageK
(2)
L . Similar arguments have been given by

Parisi in the appendix of [25]. Note, however, that this simple argument cannot explain

the scaling of the higher-order, even cumulantsK(m)
L ∼ L(1+m)/2. To get access to the

typical cumulants one would like to calculate quantities such as exp(lnK(m)
L ). To do this

analytically appears to be impossible. Numerical investigations of such quantities and also
the numerical confirmation of the above results are presented in [26]. Finally, we would
like to point out a connection to a closely related system. In the present work the particles
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were confined by hard walls at positionsx = 0 andx = L. Alternatively, one can add to
the random walk landscape a confining soft potential of the formλx2. The latter system
was much studied, for example, in the context of random field Ising models [32–34]. For

this system one finds the scalingK(2)
λ ∼ λ−1 and 〈x2〉 ∼ λ−4/3. According to arguments

by Parisi [25]L andλ are related byL ∼ λ−2/3 in accordance withK(2)
L ∼ L3/2 and the

obvious result〈x2〉 ∼ L2 for the hard wall system. Applying the relation betweenL and
λ and our result (2.20) to the higher-order cumulants of the soft potential system yields

K
(m)
λ ∼ λ−(m+1)/3 for evenm.

Acknowledgments

Inspiring discussions with A Engel and P Grassberger are gratefully acknowledged. The
author would also like to thank B Schmitt and D Szász for bringing [18] and [19] to his
attention. After this work was completed and circulated the author received from A Comtet
and C Monthus a closely related preprint [29] in which equations (2.11)–(2.13) and (4.2)
were also derived. These authors are thanked for drawing attention to their interesting work.

Appendix

In this appendix it is briefly shown that the formula for the free energy of the Sinai model
(2.19) also follows from a replica calculation without symmetry breaking. The starting point
is the expression forZnL for systems of lengthL in the absence of an external field (µ = 0)
as given by Oshaninet al [13]. They find

ZnL =
2α−n

0(n+ 1
2)(αL)

1/2

∫ ∞
0

dx exp

(
− x2

αL

)
sinh2n(x). (A.1)

The free energylnZL is obtained by the replica trick fromlnZL = limn→0(1/n)(ZnL − 1),
or equivalently as

lnZL = ∂

∂n
ZnL

∣∣∣∣
n=0

(A.2)

= − lnα −9
(

1

2

)
+ 4√

π

∫ ∞
0

dy exp(−y2) ln sinh(y
√
αL)

= − lnα + γ + 2

√
αL

π
+ 4√

π
lim
R→∞

∫ R

0
dy exp(−y2) ln(1− e−2y

√
αL)

= − lnα + γ + 2

√
αL

π
+ 2√

αLπ
lim
R→∞

∫ 1

exp(−2R
√
αL)

dx

× exp

(
− ln2 x

4αL

)
1

x
ln(1− x).

The last integral becomes, for largeL, asymptotically equal to−π2/6 showing that the
replica symmetric result is identical to that of equation (2.19). This result was also found
independently by Comtetet al [29]. They prove, in addition, the non-trivial fact that (A.2)
is not only an asymptotic but an exact expression.
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